Home
Class 10
MATHS
Prove that cos^4A-cos^2A=sin^4A-sin^2A...

Prove that `cos^4A-cos^2A=sin^4A-sin^2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: cos^(4)A-cos^(2)A=sin^(4)A-sin^(2)A

Prove that cos^4A+sin^4A+2sin^2Acos^2A=1

Prove that: (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)backslash(A-B)/(2)

Prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

to prove that (cos A-cos B)^(2)+(sin A-sin B)^(2)=4sin^(2)((A-B)/(2))

Prove that: (cos A+cos B)^(2)+(sin A-sin B)^(2)=4cos^(2)((A+B)/(2))

Prove that: cos^(2)2x-cos^(2)6x=sin4x sin8x

Prove that: (cos2A+cos3A+cos4A)/(sin2A+sin3A+sin4A)= cot3A

Prove that sec^(2)A-((sin^(2)A-2sin^(4)A)/(2cos^(4)A-cos^(2)A))=1

Prove that: (cos A+cos B)^(2)+(sin A+sin B)^(2)=4cos^(2)backslash(A-B)/(2)