Home
Class 11
MATHS
log4(log2x) +log2 (log4x)=2...

`log_4(log_2x) +log_2 (log_4x)=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

Q. If log_x a, a^(x/2) and log_b x are in G.P. then x is equal to (1) log_a(log_b a) (2) log_a(log_e a)+log_a log_b b (3) -log_a(log_a b) (4) none of these

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)

Find domain of f(x) = log_5(log_4(log_3(log_2 x)))