Home
Class 12
MATHS
lim(x rarr0)[sin x log x], [.] denotes g...

`lim_(x rarr0)[sin x log x]`, [.] denotes greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

lim_(x rarr0)sqrt(x)=

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

lim_(x rarr0)x(cosec x)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

If lim_(x rarr 0)x[4/x]= A , then the value of x at which f(x) = [x^2]sinpix is discontinuous , (where [.] denotes greatest integer function)

lim_(xrarr-7) ([x]^(2)+15[x]+56)/(sin(x+7)sin(x+8))= (where [.] denotes the greatest integer function)

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to