Home
Class 12
MATHS
Prove that: int0^(2pi)(xsin^(2n)x)/(...

Prove that: `int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx`= `pi^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

Prove that, int_(0)^(2pi)(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx=pi^(2) .

int_(0)^(pi//2)(sin^(n)x)/((sin^(n)x+cos^(n)x))dx=?

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

int_(0)^(2pi) (xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0 , is equal to

For n in N, int_(0)^(2pi) (x sin^(2n)x)/(sin^(2n) x + cos^(2n) x) dx=

The value of the integral int_0^pi (x sin^(2n) x)/(sin^(2n) x + cos^(2n) x)dx is :