Home
Class 10
MATHS
[(1+tan^(2)A)/(1+cot^(2)A)]=[(1-tan A)/(...

`[(1+tan^(2)A)/(1+cot^(2)A)]=[(1-tan A)/(1-cot A)]^(2)=tan^(2) A`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove (1 + tan^2A) / (1 + cot^2A) = [(1 - tan A) / (1 - cotA)] ^2 = tan^2A

Prove: (1-tan^2A)/(cot^2A-1)=tan^2A

Prove: (1+tan^2theta)/(1+cot^2theta)=((1-tantheta)/(1-cottheta))^2=tan^2theta

Prove : (tan^2A)/(1+tan^2A)+(cot^2A)/(1+cot^2A)=1

Prove that: ("tan"(A+B))/("cot"(A-B))=\ (tan^2A-tan^2B)/(1-tan^2Atan^2B)

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

If (tan^(3)A)/(1+tan^(2)A)+(cot^(3)A)/(1+cot^(2)A)=p secA"cosec"A+q sinA cosA , then :

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove the identity ((1-tan theta)/(1-cot theta))^(2)=tan^(2)theta