Home
Class 11
MATHS
If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(...

If `y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!),` then `(dy)/(dx)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y

If 2^(x)+2^(y)=2^(x+y) then (dy)/(dx) is equal to

If y=x^(x^(2)), then (dy)/(dx) equals

8.If .If y=x^(2)+(1)/(x^(2)+(1)/(x^(2)+x^(2)+...) ,then (dy)/(dx) is equal to

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+ x/(1!)+x^2/(2!)+x^3/(3!)+......, then (dy)/(dx)