Home
Class 11
PHYSICS
[16.A particle moving along x -axis has ...

[16.A particle moving along x -axis has acceleration `f`, at time `t` ,given by ,`f=f_(0)(1-(t)/(T))` where `f_(0)` and "T" are constants. The particle at `t=0` has zero velocity.In the time interval between `t=0` and the instant when `f=0`, the particle's velocity `(v_(x))` is (a) `(1)/(2)f_(0)T^(2)`
(b) `f_(0)T^(2)` ,
(c) `(1)/(2)f_(0)T`,
(d) `f_(0)T`

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle is moving along x-axis with acceleration a=a_(0)(1-t//T) where a_(0) and T are constants. The particle at t=0 has zero velocity. Calculate the average velocity between t=0 and the instant when a=0

The instantaneous velocity of a particle moving in a straight line is given as a function of time by: v=v_0 (1-((t)/(t_0))^(n)) where t_0 is a constant and n is a positive integer . The average velocity of the particle between t=0 and t=t_0 is (3v_0)/(4 ) .Then , the value of n is

A particle moving on a curve has the position at time t given by x=f'(t) sin t + f''(t) cos t, y= f'(t) cos t - f''(t) sin t where f is a thrice differentiable function. Then prove that the velocity of the particle at time t is f'(t) +f'''(t) .

A 2kg toy car can move along an x axis. Graph shows force F_(x) , acting on the car which being at rest at time t=0 . The velocity of the particle at t=10s is:

The magnitude of force acting on a particle moving along x-axis varies with time (t) as shown in figure. If at t = 0 the velocity of particle is v_(0) , then its velocity at t=T_(0) will be

Velocity (in m/s) of a particle moving along x-axis varies with time as, v= (10+ 5t -t^2) At time t=0, x=0. Find (a) acceleration of particle at t = 2 s and (b) x-coordinate of particle at t=3s

V_(x) is the velocity of a particle of a particle moving along the x- axis as shown. If x=2.0m at t=1.0s , what is the position of the particle at t=6.0s ?

Power supplied to a mass 2 kg varies with time as P = (3t^(2))/(2) watt. Here t is in second . If velocity of particle at t = 0 is v = 0 , the velocity of particle at time t = 2s will be:

A particle is moving along a circular path ofradius R in such a way that at any instant magnitude of radial acceleration & tangential acceleration are equal. 1f at t = 0 velocity of particle is V_(0) . Find the speed of the particle after time t=(R )//(2V_(0))

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :