Home
Class 11
MATHS
(2) if [ [1,1],[0,1] ] then A^n is...

(2)` if [ [1,1],[0,1] ] then A^n is`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals (a) [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

If [[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all positive integers ndot

If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following holds for all nge1 by the principle of mathematica induction? (A) A^n=2^(n-1) A+(n-1)I (B) A^n=nA+(n-1) I (C) A^n=2^(n-1) A-(n-1)I (D) A^n=nA-(n-1) AI

If A=[(1,0),(1,1)] and I=[(1,0),(0,1)] then which one of the following holds for all nge1 by the principle of mathematica induction? (A) A^n=2^(n-1) A+(n-1)I (B) A^n=nA+(n-1) I (C) A^n=2^(n-1) A-(n-1)I (D) A^n=nA-(n-1) AI

If A=[{:(1,a),(0,1):}] then A^(n) (where n in N ) is equal to

if the product of n matrices [(1,1),(0,1)][(1,2),(0,1)][(1,3),(0,1)]…[(1,n),(0,1)] is equal to the matrix [(1,378),(0,1)] the value of n is equal to

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

If A=[(2,-1),( 3,-2)] , then A^n= [(1, 0),( 0,1)] , if (a) n is an even natural number (b) [(1 ,0),( 0, 1)] , if n is an odd natural number (c) [(1 ,0),( 0, 1)] , if n in N (d) none of these

If A=[(1,1),(1,0)] and n epsilon N then A^n is equal to (A) 2^(n-1)A (B) 2^nA (C) nA (D) none of these

If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdotcdot[{:(1, n-1), (0,1):}] = [{:(1, 78), (0,1):}] , then the inverse of [{:(1, n), (0,1):}] is