Home
Class 10
MATHS
Simplify : 1/( sqrt(9) + sqrt(7)) + 1/(...

Simplify :
`1/( sqrt(9) + sqrt(7))` + `1/( sqrt(7) + sqrt(5))` + `1/( sqrt(5) + sqrt(3))`+ `1/( sqrt(3) + sqrt(1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is

(sqrt(7)-sqrt(5))^3 - (sqrt(7)+sqrt(5))^3

(1)/(2sqrt(7)+sqrt(5))-(1)/(2sqrt(5)+sqrt(7)) simplify

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

Simplify (1)/(sqrt(7)+sqrt(3)-sqrt(2))

(1)/(sqrt(7)-sqrt(2))-(1)/(sqrt(7)+sqrt(2))=