Home
Class 10
MATHS
Evaluate : 1/( sqrt1 + sqrt2 ) + 1/( sq...

Evaluate :
`1/( sqrt1 + sqrt2 ) + 1/( sqrt2 + sqrt3 ) + 1/( sqrt3 + sqrt4 ) + 1/( sqrt4 + sqrt5 )`
`+ 1/( sqrt5 + sqrt6 ) + 1/( sqrt6 + sqrt7 ) + 1/( sqrt7 + sqrt8 ) + 1/( sqrt8 + sqrt9 ) `
( A ) 9
( B ) 2
( C ) 3
( D ) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

Prove that: 1/(1+sqrt(2))+1/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+1/(sqrt(4)+sqrt(5))+1/(sqrt(5)+sqrt(6))+1/(sqrt(6)+sqrt(7))+1/(sqrt(7)+sqrt(8))+1/(sqrt(8)+sqrt(9)) = 2

(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9))

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?