Home
Class 12
MATHS
If u=f(r),r^(2)=x^(2)+y^(2)+z^(2), prove...

If `u=f(r),r^(2)=x^(2)+y^(2)+z^(2),` prove that `(del^(2)u)/(del x^(2))+(del^(2)u)/(del y^(2))+(del^(2)u)/(del z^(2))=f''(r)+(2)/(r)f'(r)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If u=log(x^(2)+y^(2)+z^(2)) prove that (del^(2)u)/(del x^(2))+(del^(2)u)/(del y^(2))+(del^(2)u)/(del z^(2) = 2/(x^(2)+y^(2)+z^(2)

If u = (x^2+y^2+z^2)^(-1/2) then prove that (del^2u)/(delx^2)+(del^2u)/(dely^2)+(del^2u)/(delz^2) =0

If y=f(x+ct)+g(x-ct), then show that (del^(2)y)/(del t^(2))=c^(2)(del^(2)y)/(del x^(2))

The Schrodinger wave equation for H-atom is nabla^(2) Psi = (8pi^(2)m)/(h^(2)) (E-V) Psi = 0 Where nabla^(2) = (del^(2))/(delx^(2)) +(del^(2))/(dely^(2)) +(del^(2))/(delz^(2)) E = Total energy and V=potential energy wave function Psi_(((r, theta,phi)))R_((r))Theta_((theta))Phi_((phi)) R is radial wave function which is function of ''r'' only, where r is the distance from nucleus. Theta and Phi are angular wave function. R^(2) is known as radial probability density and 4pir^(2)R^(2)dr is known as radial probability function i.e., the probability of finding the electron is spherical shell of thickness dr. Number of radial node =n -l - 1 Number of angular node = l For hydrogen atom, wave function for 1s and 2s-orbitals are: Psi_(1s) = sqrt((1)/(pia_(0)^(a)))e^(-z_(r)//a_(0)) Psi_(2s) = ((Z)/(2a_(0)))^(½) (1-(Zr)/(a_(0)))e^(-(Zr)/(a_(0))) The plot of radial probability function 4pir^(2)R^(2) aganist r will be: Answer the following questions: The following graph is plotted for ns-orbitals The value of 'n' will be:

If H=f(y-z,z-x,x-y) Prove that (del H)/(del x)+(del H)/(del y)+(del H)/(del z)=0

If U=(y)/(z)+(z)/(x), then find x(del u)/(del x)+y(del u)/(del y)+z(del u)/(del z) .

If x = r cos theta and y = r sin theta, prove that (del ^ (2) r) / (del x ^ (2)) + (del ^ (2) r) / (del y ^ (2)) = (1) / (r) [((del r) / (del x)) ^ (2) + ((del r) / (del y)) ^ (2)]

If u=x^y then find (del u)/(del x) and (del u)/(del y) .

Compare Schrodinger equation with most important equation of Newtions law. (del^(2)psi)/(delx^(2))+(del^(2)psi)/(dely^(2))+(del^(2)psi)/(delz^(2))=-(E-V)(8pi^(2)m)/(h)psi " ""Schrodinger equation" ....(i) m(d^(2)x)/(dt^(2))=Fm " ""Newton's law"" "....(ii)

If u = log ((x ^ (2) + y ^ (2)) / (x + y)), prove that x (u) / (x) + y (u) / (y) = 1