Home
Class 7
MATHS
(2+sqrt6) .(4+sqrt6)...

`(2+sqrt6) .(4+sqrt6) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Direction cosines of a line which passes through the points (1,2,3) and (-3,4,1) is A) (4/(2sqrt6), -2/(2sqrt6), 2/(2sqrt6)) B) (4/(2sqrt6), -2/(2sqrt6), -2/(2sqrt6)) C) (4/(2sqrt6), 4/(2sqrt6), 2/(2sqrt6)) D) (-4/(2sqrt6), 1/(2sqrt6), -2/(2sqrt6))

(sqrt(-2))(sqrt(-3)) is equal to A. sqrt(6) B. -sqrt(6) C. isqrt(6) D. none of these

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

Let k be a real number such that the inequality sqrt(x-3) +sqrt(6 -x) ge k has a solution then the maximum value of k is sqrt3 (2) sqrt6 -sqrt3 (3) sqrt6 (4) sqrt6 +sqrt3

If a = sqrt3, b = (1)/(2) (sqrt6 + sqrt2), and c = sqrt2 , then find angle A

If t a ntheta=-1/(sqrt(5)) and theta lies in the IV quadrant, then the value of costheta is a. (sqrt(5))/(sqrt(6)) b. 2/(sqrt(6)) c. 1/2 d. 1/(sqrt(6))

2/sqrt6 xx 3/sqrt6 + 2/6

(2) Find a and b if (5-sqrt6)/(5+sqrt6) =a+bsqrt 6

The director circle of a hyperbola is x^(2) + y^(2) - 4y =0 . One end of the major axis is (2,0) then a focus is (a) (sqrt(3),2-sqrt(3)) (b) (-sqrt(3),2+sqrt(3)) (c) (sqrt(6),2-sqrt(6)) (d) (-sqrt(6),2+sqrt(6))

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).