Home
Class 12
MATHS
Matrix M(r) is defined as M(r)= \begin{b...

Matrix `M_(r)` is defined as `M_(r)`= \begin{bmatrix}r & r-1\\r-1 & r\end{bmatrix} `r in N`; Value of `det(M_(1))+det(M_(2))+det(M_(3))+...det(M_2007) `(A) 2007 (B) 2008 (C) (2008)^(2) (D) (2007)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to(a) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to (A) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertble matrix of order 2 then (det A ^-1) is equal to- a.det A b.1/ det A c. 1 d. 0

If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an identity matrix, prove theat det (M-I)=0.

If M is the matrix [(1,-3),(-1,1)] then find matrix sum_(r=0)^(oo) ((-1)/3)^(r) M^(r+1)

Let a= 1/(n!) + sum_(r=1)^(n-1) r/((r+1)!), b= 1/(m!)+sum_(r=1)^(m-1) r/((r+1)!)then a+b= (A) 0 (B) 1 (C) 2 (D) none of these

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

If A=[a_(ij)]_(mxxn) is a matrix of rank r then (A) r=min{m,n} (B) rlemin{m,n} (C) rltmin{m,n} (D) none of these

If A=[a_(ij)]_(mxxn) is a matrix of rank r then (A) rltmin{m,n} (B) rlemin{m,n} (C) r=min{m,n} (D) none of these

Let f(r) = sum_(j=2)^(2008) (1)/(j^(r)) = (1)/(2^(r))+(1)/(3^(r))+"…."+(1)/(2008^(r)) . Find sum_(k=2)^(oo) f(k)