Home
Class 10
MATHS
a*(1)/(sqrt(2))*(1)/sqrt(2)*sqrt(3)=(1)^...

`a*(1)/(sqrt(2))*(1)/sqrt(2)*sqrt(3)=(1)^(2)-(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+.......... upto 99 terms.

Prove that : (1)/(sqrt(2)+1)+ (1)/(sqrt(3)+sqrt(2))+ (1)/(2+sqrt(3))=1

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

The matrix A={:[((1)/(sqrt(2)),(1)/(sqrt(2))),((-1)/(sqrt(2)),(-1)/(sqrt(2)))]:} is

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

Sum the series to infinity : sqrt(2)- (1)/(sqrt(2))+(1)/(2(sqrt(2)))-(1)/(4sqrt(2))+ ....

lim_(y->o)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is