Home
Class 11
MATHS
lim(x->0)(1+2x)^(3/x)...

`lim_(x->0)(1+2x)^(3/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(e^(2x)-1)/(3x)

(lim)_(x->0)((1^x+2^x+3^x++n^x)/n)^(1/x)\ is equal to (n\ !)\ ^n b. (n !)^(1//n) c. n ! d. "ln"(n !)

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

lim_(x->0) (x^2-3x+1)/(x-1)

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

lim_(x->0) (x^3-3x+1)/(x-1)

lim_(x rarr0)((1+x)^((3)/(2))-1)/(x)=(3)/(2)

lim_(x->0)(x^2-1)/(x^2-3x+2)

Evaluate : lim_(x to 0)(1-cos2x)/(3x^(2))