Home
Class 12
MATHS
Solve |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^...

Solve `|[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following: |[a,b,c],[a^2, b^2, c^2],[a^3, b^3, c^3]|

Show that |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

If |[a_1,b_1,c_1] , [a_2,b_2,c_2] ,[a_3,b_3,c_3]|=5; then the value of |[b_2c_3-b_3c_2,c_2a_3-c_3a_2,a_2b_3-a_3b_2] , [b_3c_1-b_1c_3,c_3a_1-c_1a_3,a_3b_1-a_1b_3] , [b_1c_2-b_2c_1,a_2c_1-a_1c_2,b_2a_1-b_1a_2]|

Show that det[[1,1,1a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)

If a!=b!=c such that |[a^3-1,b^3-1,c^3-1] , [a,b,c] , [a^2,b^2,c^2]|=0 then

If delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

Prove: |(0,b^2a, c^2a),( a^2b,0,c^2b),( a^2c, b^2c,0)|=2a^3b^3c^3

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|, then the value of Delta_1=|(a_1+2b_1+3c_1,2c_1+3c_1,c_1),(a_2+2b_2+3c_2,2b_2+3c_2,c_2),(a_3+2b_3+ 3c_3,2b_3+3c_3,c_3)| is equal to