Home
Class 8
MATHS
factorise (a-b)^3-(b-c)^3+(c-a)^3+3(a-b)...

factorise `(a-b)^3-(b-c)^3+(c-a)^3+3(a-b)(b-c)(c-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise a^(3)-(b-c)^(3) .

The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

What is the value of the expression ? ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/(3(a-b)(b-c)(c-a))=?

If a,b,c are real and distinct numbers,then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b)(b-c)*(c-a)) is

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3

Factorize: (a-3b)^(3)+(3b-c)^(3)+(c-a)^(3)

((a-b)^(3)+(b-c)^(2)+(c-a)^(3))/(9(a-b)(b-c)(c-a))=?

Prove that : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)=2(a^(3)+b^(3)+c^(3)-3abc)

.Factorise: (2a-b-c)^(3)+(2b-c-a)^(3)+(2c-a-b)^(3)