Home
Class 14
MATHS
1+1/(1+1/(1+1/4))=?...

`1+1/(1+1/(1+1/4))=?`

A

`14/9`

B

`2 5/9`

C

`3 5/9`

D

`4 5/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}} \), we will work from the innermost fraction outward. ### Step-by-step Solution: 1. **Start with the innermost fraction**: \[ 1 + \frac{1}{4} \] To solve this, we convert it to a single fraction: \[ = \frac{4}{4} + \frac{1}{4} = \frac{4 + 1}{4} = \frac{5}{4} \] 2. **Replace the innermost part in the original expression**: Now our expression becomes: \[ 1 + \frac{1}{1 + \frac{5}{4}} \] 3. **Solve the next fraction**: We need to solve: \[ 1 + \frac{5}{4} \] Again, convert it to a single fraction: \[ = \frac{4}{4} + \frac{5}{4} = \frac{4 + 5}{4} = \frac{9}{4} \] 4. **Replace this back into the expression**: Now our expression is: \[ 1 + \frac{1}{\frac{9}{4}} \] 5. **Simplify the fraction**: The fraction \( \frac{1}{\frac{9}{4}} \) can be simplified: \[ = \frac{4}{9} \] 6. **Replace this back into the expression**: Now we have: \[ 1 + \frac{4}{9} \] 7. **Combine the final fractions**: Convert \( 1 \) into a fraction with a denominator of \( 9 \): \[ = \frac{9}{9} + \frac{4}{9} = \frac{9 + 4}{9} = \frac{13}{9} \] 8. **Final Answer**: Thus, the value of the expression \( 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{4}}} \) is: \[ \frac{13}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1− 1/2)(1− 1/3)(1−1/4)......(1− 1/70)= x/70 then what is the value of x?

Find the sum : (a) 1 1/4+1 1/2 (b) 1 1/4+2 1/3

The value of (1-1/2)(1-1/3)(1-1/4)(1-1/5)…(1-1/n) is :

Using the principle of mathematical induction, prove that (1-1/2)(1-1/3)(1-1/4)...(1-1/(n+1))= 1/((n+1))" for all " n in N .

The value of (1 - 1/2) (1 - 1/3) (1 - 1/4)(1 - 1/5) ………(1 - 1/n) is :

When simplified the product (1 - 1/2) (1 - 1/3) (1 - 1/4) .........(1-1/n) gives :

Determine the value of '?' in: ( 1- (1)/(2) ) ( 1- (1)/(3) ) ( 1- (1)/(4) ) ......... (1- ( 1)/( n) ) = ?