Home
Class 14
MATHS
Find the value of ? 92xx576-:(sqrt1296)+...

Find the value of `?`
`92xx576-:(sqrt1296)+10=(?)^3+144+sqrt49`

A

3

B

`(9)^2`

C

11

D

27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 92 \times 576 - \left(\sqrt{1296}\right) + 10 = (?)^3 + 144 + \sqrt{49} \), we will follow these steps: ### Step 1: Calculate the square roots First, we need to find the values of \(\sqrt{1296}\) and \(\sqrt{49}\). \[ \sqrt{1296} = 36 \quad \text{(since } 36 \times 36 = 1296\text{)} \] \[ \sqrt{49} = 7 \quad \text{(since } 7 \times 7 = 49\text{)} \] ### Step 2: Substitute the square roots into the equation Now we can substitute these values back into the equation: \[ 92 \times 576 - 36 + 10 = (?)^3 + 144 + 7 \] ### Step 3: Simplify the left side Calculate \(92 \times 576\): \[ 92 \times 576 = 52992 \] Now substitute this back into the equation: \[ 52992 - 36 + 10 = (?)^3 + 144 + 7 \] Now simplify the left side: \[ 52992 - 36 = 52956 \] \[ 52956 + 10 = 52966 \] So we have: \[ 52966 = (?)^3 + 144 + 7 \] ### Step 4: Simplify the right side Now simplify the right side: \[ 144 + 7 = 151 \] So we can rewrite the equation as: \[ 52966 = (?)^3 + 151 \] ### Step 5: Isolate the cube term Now, isolate \((?)^3\): \[ (?)^3 = 52966 - 151 \] \[ (?)^3 = 52815 \] ### Step 6: Find the cube root Now we need to find the cube root of \(52815\): To find \(? = \sqrt[3]{52815}\), we can estimate or calculate directly: \[ 11^3 = 1331 \quad \text{(too low)} \] \[ 30^3 = 27000 \quad \text{(too low)} \] \[ 40^3 = 64000 \quad \text{(too high)} \] After checking, we find that \(11\) is a reasonable estimate. ### Step 7: Calculate the cube root Using a calculator or estimation method, we find: \[ 11^3 = 1331 \] So, we find that: \[ ? = 11 \] ### Final Answer Thus, the value of \(?\) is: \[ \boxed{11} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(18)xx sqrt(3)

Find the value of sqrt(-16) xx sqrt(-25) .

Find the value of sqrt(1.6) times sqrt(1.6)

Find the value of (1296)^(0.17)xx(1296)^(0.08)

Find the value of (1)/(sqrt(10)) where sqrt(10)=3.5

Find the approximate values of : sqrt(144.02)

Find the value of sqrt(1/4 ) times sqrt(3/4)