Home
Class 11
MATHS
The determinant |(1,-2,3),(-4,5,-6),(-7,...

The determinant `|(1,-2,3),(-4,5,-6),(-7,8,-9)|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( |(1, -2, 3), (-4, 5, -6), (-7, 8, -9)| \), we will use the method of cofactor expansion. ### Step-by-Step Solution: 1. **Write the Determinant**: \[ D = \begin{vmatrix} 1 & -2 & 3 \\ -4 & 5 & -6 \\ -7 & 8 & -9 \end{vmatrix} \] 2. **Choose the First Row for Expansion**: We will expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} 5 & -6 \\ 8 & -9 \end{vmatrix} - (-2) \cdot \begin{vmatrix} -4 & -6 \\ -7 & -9 \end{vmatrix} + 3 \cdot \begin{vmatrix} -4 & 5 \\ -7 & 8 \end{vmatrix} \] 3. **Calculate the 2x2 Determinants**: - For the first determinant: \[ \begin{vmatrix} 5 & -6 \\ 8 & -9 \end{vmatrix} = (5 \cdot -9) - (-6 \cdot 8) = -45 + 48 = 3 \] - For the second determinant: \[ \begin{vmatrix} -4 & -6 \\ -7 & -9 \end{vmatrix} = (-4 \cdot -9) - (-6 \cdot -7) = 36 - 42 = -6 \] - For the third determinant: \[ \begin{vmatrix} -4 & 5 \\ -7 & 8 \end{vmatrix} = (-4 \cdot 8) - (5 \cdot -7) = -32 + 35 = 3 \] 4. **Substitute Back into the Determinant**: Now substitute the values of the 2x2 determinants back into the expression for \( D \): \[ D = 1 \cdot 3 - (-2) \cdot (-6) + 3 \cdot 3 \] \[ D = 3 - 12 + 9 \] 5. **Calculate the Final Value**: \[ D = 3 - 12 + 9 = 0 \] Thus, the value of the determinant is \( \boxed{0} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the determinants of minors of the determinant |{:(1,2,3),(-4,3,6),(2,-7,9):}|

Find the minor of element 6 in the determinant Delta=|1 2 3 4 5 6 7 8 9|

The order of the matrices [{:(1,2,3),(4,5,-1):}], [{:(2,4),(9,2),(6,3),(4,1):}] , [{:(4,5,6),(3,2,1),(9,8,7):}] respectively are :

Find the sum in the nth group of sequence, (I 1,(2,3),(4,5,6,7),(8,9,………15),……………….. (ii) (1),(2,3,4),(5,6,7,8,9),…………..

The co-factor of -4 and 9 in [[-1, -2, 3], [-4, -5, -6], [-7, 8, 9]] are respectively.

If A={1,4, 7,8}, B={4,6,8,9} and C={3,4,5, 7} be three subsets of a universal set U ={1,2, 3, 4,5, 6, 7,8, 9} . Then, A uu (Bnn C') is equal to