Home
Class 11
MATHS
Transform to Cartesian coordinate the eq...

Transform to Cartesian coordinate the equations
`r (cos 3 theta + sin 3 theta) = 5k sin theta cos theta`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Transform to Cartesian coordinates the equations: r^(2)=a^(2)cos2 theta

(sin 3theta)/(sin theta)-(cos 3theta)/(cos theta)=

Find the Cartesian equation of the curves whose parametric equation are : x=cos theta + sin theta, y = sin theta - cos theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Solve the equation 3-2cos theta-4sin theta-cos2 theta+sin2 theta=0

Find the Cartesian euqaiton of that curves whose parametric equation : x= cos theta + sin theta + 1, y = sin theta - cos theta + 2

cos theta-cos3 theta+cos5 theta-cos7 theta=4sin theta sin4 theta cos2 theta

prove that all lines represented by the equation : (2 cos theta + 3 sin theta) x + (3 cos theta - 5 sin theta) y- (5 cos theta - 2 sin theta) = 0 pass through a fixed point for all values of theta . Find the coordinates of that point.

If 3 sin theta + 5 cos theta =5, then the value of (5 sin theta - 3 cos theta ) is

(sin3 theta+cos3 theta)/(cos theta-sin theta)=1+2xx sin2 theta