Home
Class 11
MATHS
Find the equations to the straight lines...

Find the equations to the straight lines passing through the following pairs of points.
`(a cos phi_(1), a sin phi_(1)) and (a cos phi_(2), a sin phi_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the straight line passing through the points \((a \cos \phi_1, a \sin \phi_1)\) and \((a \cos \phi_2, a \sin \phi_2)\), we can follow these steps: ### Step 1: Identify the coordinates Let: - Point A: \((x_1, y_1) = (a \cos \phi_1, a \sin \phi_1)\) - Point B: \((x_2, y_2) = (a \cos \phi_2, a \sin \phi_2)\) ### Step 2: Use the point-slope form of the line The equation of the line passing through two points \((x_1, y_1)\) and \((x_2, y_2)\) can be given by the formula: \[ y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \] ### Step 3: Substitute the coordinates into the formula Substituting our points into the formula: \[ y - a \sin \phi_1 = \frac{(a \sin \phi_2 - a \sin \phi_1)}{(a \cos \phi_2 - a \cos \phi_1)} (x - a \cos \phi_1) \] ### Step 4: Simplify the equation We can simplify the equation by factoring out \(a\) from the numerator and the denominator: \[ y - a \sin \phi_1 = \frac{(a (\sin \phi_2 - \sin \phi_1))}{(a (\cos \phi_2 - \cos \phi_1))} (x - a \cos \phi_1) \] This simplifies to: \[ y - a \sin \phi_1 = \frac{\sin \phi_2 - \sin \phi_1}{\cos \phi_2 - \cos \phi_1} (x - a \cos \phi_1) \] ### Step 5: Use trigonometric identities Using the trigonometric identities: \[ \sin \phi_2 - \sin \phi_1 = 2 \cos\left(\frac{\phi_1 + \phi_2}{2}\right) \sin\left(\frac{\phi_2 - \phi_1}{2}\right) \] \[ \cos \phi_2 - \cos \phi_1 = -2 \sin\left(\frac{\phi_1 + \phi_2}{2}\right) \sin\left(\frac{\phi_2 - \phi_1}{2}\right) \] Substituting these identities into our equation gives: \[ y - a \sin \phi_1 = \frac{2 \cos\left(\frac{\phi_1 + \phi_2}{2}\right) \sin\left(\frac{\phi_2 - \phi_1}{2}\right)}{-2 \sin\left(\frac{\phi_1 + \phi_2}{2}\right) \sin\left(\frac{\phi_2 - \phi_1}{2}\right)} (x - a \cos \phi_1) \] ### Step 6: Cancel terms The \(2\) and \(\sin\left(\frac{\phi_2 - \phi_1}{2}\right)\) cancel out: \[ y - a \sin \phi_1 = -\cot\left(\frac{\phi_1 + \phi_2}{2}\right) (x - a \cos \phi_1) \] ### Step 7: Rearranging the equation Rearranging gives: \[ \sin\left(\frac{\phi_1 + \phi_2}{2}\right)(y - a \sin \phi_1) + \cos\left(\frac{\phi_1 + \phi_2}{2}\right)(x - a \cos \phi_1) = 0 \] ### Final Equation Thus, the equation of the straight line passing through the points \((a \cos \phi_1, a \sin \phi_1)\) and \((a \cos \phi_2, a \sin \phi_2)\) is: \[ \sin\left(\frac{\phi_1 + \phi_2}{2}\right) y + \cos\left(\frac{\phi_1 + \phi_2}{2}\right) x - a \left(\sin\left(\frac{\phi_1 + \phi_2}{2}\right) \sin \phi_1 + \cos\left(\frac{\phi_1 + \phi_2}{2}\right) \cos \phi_1\right) = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a sin phi+b cos phi=c then a cos phi-b sin phi is

If the distance between two points (a cos theta,a sin theta) and (a cos phi,a sin phi) is 2a then theta is

Perpendicular distance from the origin to the line joining the points (a cos theta,a sin theta)(a cos phi,a sin phi) is

Foot of the perpendicular from origin to the line joining the points (a cos theta,a sin theta),(a cos phi,a sin phi) is

Find perpendicular distance from the origin of the line joining the points (cos theta,quad sin theta) and (cos phi,quad sin phi)

Find the equations of tangent to the curve x=a sin^(3)phi,y=a cos^(3)phi at phi

int(2sin2 phi-cos phi)/(6-cos^(2)phi-4sin phi)d phi

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi), (cos phi sin phi,sin^2 phi)]=0

cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2) phi=