Home
Class 11
MATHS
Find the equations to the straight lines...

Find the equations to the straight lines passing through the following pairs of points.
`(a cos phi_(1), b sin phi_(1)) and (a cos phi_(2), b sin phi_(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the straight line passing through the points \((a \cos \phi_1, b \sin \phi_1)\) and \((a \cos \phi_2, b \sin \phi_2)\), we can use the two-point form of the equation of a line. Here are the steps to derive the equation: ### Step 1: Identify the Points Let the points be: - Point 1: \(P_1 = (x_1, y_1) = (a \cos \phi_1, b \sin \phi_1)\) - Point 2: \(P_2 = (x_2, y_2) = (a \cos \phi_2, b \sin \phi_2)\) ### Step 2: Use the Two-Point Form of the Line Equation The two-point form of the equation of a line passing through points \((x_1, y_1)\) and \((x_2, y_2)\) is given by: \[ y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \] Substituting the coordinates of the points: \[ y - b \sin \phi_1 = \frac{b \sin \phi_2 - b \sin \phi_1}{a \cos \phi_2 - a \cos \phi_1} (x - a \cos \phi_1) \] ### Step 3: Simplify the Slope The slope of the line can be simplified: \[ \text{slope} = \frac{b (\sin \phi_2 - \sin \phi_1)}{a (\cos \phi_2 - \cos \phi_1)} \] Thus, the equation becomes: \[ y - b \sin \phi_1 = \frac{b (\sin \phi_2 - \sin \phi_1)}{a (\cos \phi_2 - \cos \phi_1)} (x - a \cos \phi_1) \] ### Step 4: Rearranging the Equation Multiplying both sides by \(a (\cos \phi_2 - \cos \phi_1)\) to eliminate the fraction: \[ a (\cos \phi_2 - \cos \phi_1)(y - b \sin \phi_1) = b (\sin \phi_2 - \sin \phi_1)(x - a \cos \phi_1) \] ### Step 5: Expand and Rearrange Expanding both sides: \[ a (\cos \phi_2 - \cos \phi_1) y - ab (\cos \phi_2 - \cos \phi_1) \sin \phi_1 = b (\sin \phi_2 - \sin \phi_1) x - ab (\sin \phi_2 - \sin \phi_1) \cos \phi_1 \] Rearranging gives us: \[ b (\sin \phi_2 - \sin \phi_1) x + a (\cos \phi_2 - \cos \phi_1) y = ab (\sin \phi_2 - \sin \phi_1) \cos \phi_1 + ab (\cos \phi_2 - \cos \phi_1) \sin \phi_1 \] ### Step 6: Final Equation Thus, the final equation of the line is: \[ b (\sin \phi_2 - \sin \phi_1) x + a (\cos \phi_2 - \cos \phi_1) y = ab (\sin \phi_2 \cos \phi_1 + \cos \phi_2 \sin \phi_1 - \sin \phi_1 \cos \phi_1) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a sin phi+b cos phi=c then a cos phi-b sin phi is

If the distance between two points (a cos theta,a sin theta) and (a cos phi,a sin phi) is 2a then theta is

Perpendicular distance from the origin to the line joining the points (a cos theta,a sin theta)(a cos phi,a sin phi) is

Foot of the perpendicular from origin to the line joining the points (a cos theta,a sin theta),(a cos phi,a sin phi) is

Find perpendicular distance from the origin of the line joining the points (cos theta,quad sin theta) and (cos phi,quad sin phi)

Find the equations of tangent to the curve x=a sin^(3)phi,y=a cos^(3)phi at phi

int(2sin2 phi-cos phi)/(6-cos^(2)phi-4sin phi)d phi

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi), (cos phi sin phi,sin^2 phi)]=0