Home
Class 11
MATHS
What is the angle between the straight l...

What is the angle between the straight lines `(m^(2) - mn) y = (mn + n^(2)) x + n^(3)` and `(mn + m^(2)) y = (mn - n^(2)) x + m^(3)` , where `m gt n` ?

Text Solution

Verified by Experts

The correct Answer is:
`"tan"^(-1) (4m^(2) n^(2))/(m^(4)- n^(4))`
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the angle between the straight lines (m^(2)-mm)y=(mm+n^(2))x+n^(3) and(mn+m^(2))y=(mn-n^(2))x+m^(3) where mgtn ?

Verify that (m + n) ( m ^(2) - mn + n ^(2)) = m ^(3) + n ^(3)

Factorise: m ^(2) - 4 mn + 4n^(2)

(m + n) ^ (3) + (mn) ^ (3)

If m -n = 16 and m ^(2) + n ^(2) = 400, then find mn.

Factoris the expression. l ^(2) m ^(2) n - lm ^(2) n ^(2) - l^(2) mn ^(2)

If a^m .a^n = a^(mn) , then m(n - 2) + n(m- 2) is :

if m+n=5 and mn= 6, but (m^2 + n^2) (m^3 + n^3) = how much?