Home
Class 11
MATHS
Transform to axes inclined at 30° to the...

Transform to axes inclined at 30° to the original axes the equation `x^(2) + 2 sqrt"" 3 xy - y^(2) = 2a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To transform the given equation \( x^2 + 2\sqrt{3}xy - y^2 = 2a^2 \) to axes inclined at \( 30^\circ \) to the original axes, we will follow these steps: ### Step 1: Identify the transformation equations For axes inclined at an angle \( \theta \) (in this case, \( 30^\circ \)), the transformations for \( x \) and \( y \) in terms of the new coordinates \( x' \) and \( y' \) are given by: \[ x = x' \cos \theta - y' \sin \theta \] \[ y = x' \sin \theta + y' \cos \theta \] Substituting \( \theta = 30^\circ \): \[ \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 30^\circ = \frac{1}{2} \] Thus, the transformations become: \[ x = \frac{\sqrt{3}}{2} x' - \frac{1}{2} y' \] \[ y = \frac{1}{2} x' + \frac{\sqrt{3}}{2} y' \] ### Step 2: Substitute the transformations into the original equation Now we substitute these expressions for \( x \) and \( y \) into the original equation: \[ x^2 + 2\sqrt{3}xy - y^2 = 2a^2 \] Substituting for \( x \): \[ x^2 = \left(\frac{\sqrt{3}}{2} x' - \frac{1}{2} y'\right)^2 = \frac{3}{4} x'^2 - \frac{\sqrt{3}}{2} x'y' + \frac{1}{4} y'^2 \] Substituting for \( y \): \[ y^2 = \left(\frac{1}{2} x' + \frac{\sqrt{3}}{2} y'\right)^2 = \frac{1}{4} x'^2 + \frac{\sqrt{3}}{2} x'y' + \frac{3}{4} y'^2 \] Substituting for \( xy \): \[ xy = \left(\frac{\sqrt{3}}{2} x' - \frac{1}{2} y'\right)\left(\frac{1}{2} x' + \frac{\sqrt{3}}{2} y'\right) = \frac{\sqrt{3}}{4} x'^2 + \frac{3}{4} y'^2 - \frac{1}{4} x'y' \] ### Step 3: Substitute these into the equation Now substituting these into the equation: \[ \left(\frac{3}{4} x'^2 - \frac{\sqrt{3}}{2} x'y' + \frac{1}{4} y'^2\right) + 2\sqrt{3}\left(\frac{\sqrt{3}}{4} x'^2 + \frac{3}{4} y'^2 - \frac{1}{4} x'y'\right) - \left(\frac{1}{4} x'^2 + \frac{\sqrt{3}}{2} x'y' + \frac{3}{4} y'^2\right) = 2a^2 \] ### Step 4: Simplify the equation Combine like terms: 1. For \( x'^2 \): \[ \frac{3}{4} x'^2 + \frac{3}{2} x'^2 - \frac{1}{4} x'^2 = \frac{3}{4} x'^2 + \frac{6}{4} x'^2 - \frac{1}{4} x'^2 = \frac{8}{4} x'^2 = 2 x'^2 \] 2. For \( y'^2 \): \[ \frac{1}{4} y'^2 + \frac{3\sqrt{3}}{2} y'^2 - \frac{3}{4} y'^2 = \frac{1}{4} y'^2 + \frac{6}{4} y'^2 - \frac{3}{4} y'^2 = \frac{4}{4} y'^2 = y'^2 \] 3. For \( x'y' \): \[ -\frac{\sqrt{3}}{2} x'y' - \frac{1}{2} x'y' - \frac{\sqrt{3}}{2} x'y' = -\left(\sqrt{3} + \frac{1}{2}\right)x'y' = -\left(\frac{2\sqrt{3} + 1}{2}\right)x'y' \] ### Step 5: Final equation Putting it all together, we get: \[ 2x'^2 - \left(\frac{2\sqrt{3} + 1}{2}\right)x'y' - y'^2 = 2a^2 \] ### Step 6: Rearranging Rearranging gives us the transformed equation: \[ 2x'^2 - y'^2 - \left(\frac{2\sqrt{3} + 1}{2}\right)x'y' = 2a^2 \] ### Final Result The transformed equation in the new coordinates is: \[ 2x'^2 - y'^2 - \left(\frac{2\sqrt{3} + 1}{2}\right)x'y' = 2a^2 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Transform to axes inclined at 45^(@) to the original axes for the equation 17x^(2)-16xy+17y^(2)=225 is

By rotating the coordinates axes through 30^(@) in anticlockwise sense the eqution x^(2)+2sqrt(3)xy-y^(2)=2a^(2) change to

On shifting the origin to the point (1,-1) , the axes remaining parallel to the original axes, the equation of a curve becomes : 4x^(2)+y^(2)+3x-4y+2=0 . Find its original equation.

Vertex of y=x^(2)-2ax+1 is closest to the origin then

Though what angle should the axes be rotated so that the equation 9x^(2)-2sqrt(3)xy+7y^(2)=10 may be changed to 3x^(2)+5y^(2)=5?

Transforming to parallel axes through a point (p,q),the equation 2(x^(2))+3xy+4y^(2)+x+18y+25=0 becomes 2(x^(2))+3xy+4y^(2)=1

Transform the equation x^(2)+y^(2)=ax into polar form.

if the axes are rotated through 60 in the anticlockwise sense,find the transformed form of the equation x^(2)-y^(2)=a^(2)

The equations of the lines represented by the equation ax^(2)+(a+b)xy+by^(2)+x+y=0 are