Home
Class 11
MATHS
Find the locus of the middle points of c...

Find the locus of the middle points of chords of the parabola which
subtend a constant angle a at the vertex

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the midpoints of chords of the parabola \( y^2 = 4Ax \) that subtend a constant angle \( \alpha \) at the vertex, we can follow these steps: ### Step 1: Identify Points on the Parabola Let the points \( A \) and \( B \) on the parabola be represented in parametric form: - Point \( A \) corresponds to parameter \( t_1 \): \( A(t_1) = (At_1^2, 2At_1) \) - Point \( B \) corresponds to parameter \( t_2 \): \( B(t_2) = (At_2^2, 2At_2) \) ### Step 2: Find the Midpoint of the Chord The midpoint \( M \) of the chord \( AB \) is given by: \[ M = \left( \frac{At_1^2 + At_2^2}{2}, \frac{2At_1 + 2At_2}{2} \right) = \left( \frac{A(t_1^2 + t_2^2)}{2}, A(t_1 + t_2) \right) \] Let \( H = \frac{A(t_1^2 + t_2^2)}{2} \) and \( K = A(t_1 + t_2) \). ### Step 3: Find the Slopes of Lines OA and OB The slopes of the lines from the origin \( O(0,0) \) to points \( A \) and \( B \) are: - Slope of \( OA \): \[ m_1 = \frac{2At_1 - 0}{At_1^2 - 0} = \frac{2}{t_1} \] - Slope of \( OB \): \[ m_2 = \frac{2At_2 - 0}{At_2^2 - 0} = \frac{2}{t_2} \] ### Step 4: Use the Angle Condition The angle \( \alpha \) between the two lines can be expressed using the tangent of the angle: \[ \tan \alpha = \frac{m_1 - m_2}{1 + m_1 m_2} \] Substituting the slopes: \[ \tan \alpha = \frac{\frac{2}{t_1} - \frac{2}{t_2}}{1 + \frac{4}{t_1 t_2}} = \frac{2(t_2 - t_1)}{t_1 t_2 + 4} \] ### Step 5: Rearranging the Equation From the above equation, we can rearrange it to find a relationship between \( t_1 \) and \( t_2 \): \[ t_2 - t_1 = \tan \alpha \left( \frac{t_1 t_2 + 4}{2} \right) \] ### Step 6: Use the Identity for \( t_1 + t_2 \) and \( t_1 t_2 \) We know: \[ (t_1 + t_2)^2 = t_1^2 + t_2^2 + 2t_1 t_2 \] Substituting \( t_1 + t_2 = \frac{K}{A} \) and \( t_1^2 + t_2^2 = \frac{2H}{A} + 2t_1 t_2 \): \[ \left( \frac{K}{A} \right)^2 = \frac{2H}{A} + 2t_1 t_2 \] ### Step 7: Solve for \( t_1 t_2 \) From the above, we can express \( t_1 t_2 \) in terms of \( H \) and \( K \): \[ t_1 t_2 = \frac{K^2}{2A^2} - \frac{H}{A} \] ### Step 8: Substitute Back into the Angle Condition Now substitute \( t_1 t_2 \) back into the equation for \( t_2 - t_1 \) and simplify: \[ (t_2 - t_1)^2 = \tan^2 \alpha \left( 4 + t_1 t_2 \right) \] Substituting \( t_1 t_2 \): \[ (t_2 - t_1)^2 = \tan^2 \alpha \left( 4 + \left( \frac{K^2}{2A^2} - \frac{H}{A} \right) \right) \] ### Step 9: Final Locus Equation After simplifying, we arrive at the locus of the midpoint \( M(H, K) \): \[ \tan^2 \alpha (8A^2 + K^2 - 2AH)^2 = 16A^2(4AH - K^2) \] This is the required locus of the midpoints of the chords of the parabola that subtend a constant angle \( \alpha \) at the vertex.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the locus of the middle points of the chords of the parabola y^(2)=4ax which subtend a right angle at the vertex of the parabola.

Find the locus of the mid-points of the chords of the parabola y^(2)=4ax which subtend a right angle at vertex of the parabola.

Locus of the middle points of chords of the circle x^(2)+y^(2)=16 which subtend a right angle at the centre is

The locus of the middle points of normal chords of the parabola y^(2)=4ax is-

Find the locus of the middle points of all chords of the parabola y^(2) = 4ax , which are drawn through the vertex.

Find the locus of the midpoint of the chords of the circle x^(2)+y^(2)=a^(2) which subtend a right angle at the point (c,0) .