Home
Class 12
MATHS
If y=1/(a+x), then yn is equal to: a)...

If `y=1/(a+x)`, then `y_n` is equal to:
a) `((-1)^n n!)/(x+a)^(n+1)`
b) `((-1)^n n!)/(x+a)^n`
c) `((-1)^na^n)/(x+a)^(n+1)`
a) `a^n n!`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(n-1)lnx then x^2y_2+(3-2n)x y_1 is equal to (a) -(n-1)^2y (b) (n-1)^2y (c) -n^2y (d) n^2y

(d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

(d^n)/(dx^n)(logx)=? (a) ((n-1)!)/(x^n) (b) (n !)/(x^n) (c) ((n-2)!)/(x^n) (d) (-1)^(n-1)((n-1)!)/(x^n)

If y^(1/n)+y^(-1/n) = 2x then (x^2-1)y_2+xy_1 is equal to

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to (a) n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

If x_1, x_2, x_3,...... x _(2n) are in A.P , then sum _(r=1)^(2n) (-1)^(r+1) x_r^2 is equal to (a) (n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (b) (2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (c) (n)/((n-1))(x _(1)^(2) -x _(2n) ^(2)) (d) (n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y n y (d) n^2y

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y n y (d) n^2y

If y=a\ x^(n+1)+b x^(-n) find (dy)/(dx) .

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals (a) [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]