Home
Class 12
MATHS
sqrt(((dy)/(dx))^2)=1+x...

`sqrt(((dy)/(dx))^2)=1+x`

Promotional Banner

Similar Questions

Explore conceptually related problems

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

If y=sqrt(x+1)+sqrt(x-1)," then: "2sqrt(x^(2)-1)*(dy)/(dx)=

If y=log[x+sqrt((1+x^(2)))], prove that sqrt((1+x^(2)))(dy)/(dx)=1

Solve the following differential equations (dy)/(dx)=sqrt((1-y^2)/(1-x^2)) .

Solve [(e^(-2sqrt(x)))/(sqrt(x))-(y)/(sqrt(x))](dx)/(dy)=1(x!=0)

sqrt(1-x^(6))dy=x^(2)dx

(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))