Home
Class 12
MATHS
(dy)/(dx)=d/dx(x^(4))/(1-x^(2))...

`(dy)/(dx)=d/dx(x^(4))/(1-x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)((1+x^2+x^4)/(1+x+x^2)) = a+bx , find the values of a and b .

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

(d)/(dx)[sin^(4)(3x+1)]

STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C and STATEMENT-2 : (d)/(dx)x^(x)=x^(x)(1+logx)

Evaluate: (d)/(dx)((1)/(x))

If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

If f(x)a n dg(x) a re differentiate functions, then show that f(x)+-g(x) are also differentiable such that d/(dx){f(x)+-g(x)}=d/(dx){f(x)}+-d/(dx){g(x)}

Differentiate function with respect to x,f(x)= (x^(4)+x^(3)+x^(2)+1)/(x)

Using the first principle, prove that: d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x))+g(x)d/(dx)(f(x))

Evaluate: (d)/(dx)(x^(1//2))