Home
Class 12
MATHS
Prove that lim(x->a) sinx=sina...

Prove that `lim_(x->a) sinx=sina`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

lim_(x->0)|sinx|/x

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Evaluate lim_(xtoa) (sinx-sina)/(sqrt(x)-sqrt(a))

lim_(xrarroo) (sinx)/(x)=?

lim_(xrarr0) (sinx)/(x)= ?

lim_(x to 0) (sin(sinx))/x

Evaluate the following limits: lim_(xrarra)((sinx-sina))/((x-a))

Evaluate the following limits: lim_(xrarra)((sinx-sina))/((sqrtx-sqrta))

If a=lim_(x->oo) sinx/x & b=lim_(x->0) sinx/x Then int (ab log(1+x)+x^2)dx is equal to