Home
Class 12
MATHS
Lim(x rarr0)[(1)/(x sin^(-1)x)-(1-x^(2))...

`Lim_(x rarr0)[(1)/(x sin^(-1)x)-(1-x^(2))/(x^(2))]`

Promotional Banner

Similar Questions

Explore conceptually related problems

[lim_(x rarr0)(1)/((sin^(-1)x)^(2))-(1)/(x^(2))]=

lim_(x rarr0)(x)/(sin2x)

Evaluate: lim_(x rarr0)(1)/(x)sin^(-1)((2x)/(1+x^(2)))

lim_(x rarr0) [(sin^(-1)x)/(x)]

lim_(x rarr0)[(sin x sin^(-1)x-x^(2))/(x^(6))] equals

lim_(x rarr0)(sin^(-1)x-tan^(-1)x)/(x^(2))

The value of limit lim_(x rarr0)[(1)/(x^(2))-(1)/(sin^(2)x)]

lim_(x rarr0)((1)/(sin^(2)x)-(1)/(birth^(2)x))=

lim_(x rarr0)((1)/(x))^(sin x)

lim_(x rarr0)(1-cos x)/(sin x)