Home
Class 11
MATHS
log2[log3(log2x)]=1...

`log_2[log_3(log_2x)]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : log_4(log_3(log_2x))=0

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

Find domain of f(x) = log_5(log_4(log_3(log_2 x)))

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

The domain of the function f(x)=log_2[log_3(log_4(x^2-3x+6)}]i s .

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_2 (log_8x)=log_8(log_2x), find the value of (log_2x)^2.

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

If log_2x+log_x2=10/3=log_2y+log_y2 and x!=y ,then x+y=

Solve for x: log_(4) log_(3) log_(2) x = 0 .