Home
Class 12
MATHS
If f:R rarr R,where f(x)=x^(2)+1,then f^...

If `f:R rarr R`,where `f(x)=x^(2)+1`,then `f^(-1)`(26) is equal to
: (A) `+-5` (B) `+-3` (C) `+-6` (D) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr R defined by f(x)=x^(2)-6x-14 then f^(-1)(2)=

If f:R rarr R,f(x)=x^(2), then {x|f(x)=-1} equals

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

Let f:r rarr R, where f(x)=2^(|x|)-2^(-x) then f(x) is

If f:R rarr R is given by f(x)=3x-5 then f^(-1)(x)

f:R rarr R where f(x)=(x^(2)+3x+6)/(x^(2)+x+1), then f(x) is

If function f : R rarr R^(+), f(x) = 2^(x) , then f^(-1) (x) will be equal to

If f:R rarr R,f(x)=2x;g:R rarr Rg(x)=x+1, then (f*g)(2) equals

If f:R rarr R be given by f(x)=(a-x^(2))^(1/2) ,then f@f(x) is

If f:R to R be a mapping defined by f(x)=x^(3)+5 , then f^(-1) (x) is equal to