Home
Class 11
MATHS
log3\4log8^(x^2+7)+log1\2log1\4(x^2+7)^-...

log3\4log8^(x^2+7)+log1\2log1\4(x^2+7)^-1=-2

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Solve the equation log_4 (2x^2 + x + 1) - log_2 (2x - 1) = 1.

Solve (log)_4 8+(log)_4(x+3)-(log)_4(x-1)=2.

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0