Home
Class 11
PHYSICS
The velocity of an object moving in a st...

The velocity of an object moving in a straight line path is given as a function of time by v= 6t-3`t^(2)` where v is in m`s^(-1)` ,t is in s.The average velocity of the object between, t=0 and t=2s is

Promotional Banner

Similar Questions

Explore conceptually related problems

The velocity of an object moving rectilinearly is given as a function of time by v=4t-3t^(2) where v is in m/s and t is in seconds. The average velocity if particle between t=0 to t=2 seconds is

The instantaneous velocity of a particle moving in a straight line is given as a function of time by: v=v_0 (1-((t)/(t_0))^(n)) where t_0 is a constant and n is a positive integer . The average velocity of the particle between t=0 and t=t_0 is (3v_0)/(4 ) .Then , the value of n is

The velocity v of a body moving along a straight line varies with time t as v=2t^(2)e^(-t) , where v is in m/s and t is in second. The acceleration of body is zero at t =

The velocity 'v' of a particle moving along straight line is given in terms of time t as v=3(t^(2)-t) where t is in seconds and v is in m//s . The displacement of aprticle from t=0 to t=2 seconds is :

The velocity 'v' of a particle moving along straight line is given in terms of time t as v=3(t^(2)-t) where t is in seconds and v is in m//s . The distance travelled by particle from t=0 to t=2 seconds is :

The displacement x of an object is given as a function of time x=2t+3t^(2) Calculate the instantaneous velocity of the object at t = 2 s

The velocity 'v' of a particle moving along straight line is given in terms of time t as v=3(t^(2)-t) where t is in seconds and v is in m//s . The speed is minimum after t=0 second at instant of time

The displacement x of an object is given as a funstion of time, x=2t+3t^(2) . The instantaneous velocity of the object at t = 2 s is

A car moves along a straight line whose equation of motion is given by s=12t+3t^(2)-2t^(3) where s is in metres and t is in seconds. The velocity of the car at start will be :-

The position of an object moving on a straight line is defined by the relation x=t^(3)-2t^(2)-4t , where x is expressed in meter and t in second. Determine (a) the average velocity during the interval of 1 second to 4 second. (b) the velocity at t = 1 s and t = 4 s, (c) the average acceleration during the interval of 1 second to 4 second. (d) the acceleration at t = 4 s and t = 1 s.