Home
Class 8
MATHS
Prove that: sqrt {x^{-1} y}.sqrt {y^...

Prove that:
`sqrt {x^{-1} y}.sqrt {y^{-1} z}.sqrt {z^{-1} x}=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

Prove that the lines sqrt(3)x+y=0,\ sqrt(3)y+x=0,\ sqrt(3)x+y=1\ a n d\ sqrt(3)y+x=1 form a rhombus.

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z , then prove that sqrt(z^2-1)=(sqrt(1+x^2)-xy)/(x+ysqrt(1-x^2))

Assuming that x , y , z are positive real numbers, simplify each of the following: (i) (sqrt(x))^(-2/3)\ \ sqrt(y^4)\ -:\ sqrt(x y^(-1/2))

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y

Prove that the diagonals of the parallelogram formed by the lines sqrt(3)x+y=0, sqrt(3) y+x=0, sqrt(3) x+y=1 and sqrt(3) y+x=1 are at right angles.

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}| =(x-y)(y-z)(z-x)(x+y+z)