Home
Class 11
MATHS
log3[log4(log5x)]=1...

log3[log4(log5x)]=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

Solve : log_4(log_3(log_2x))=0

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

Find domain of f(x) = log_5(log_4(log_3(log_2 x)))

Find the domain of function f(x)=(log)_4[(log)_5{(log)_3(18 x-x^2-77}]

Find the domain of function f(x)=(log)_4[(log)_5{(log)_3(18 x-x^2-77}]

Solve the equation for x : log4+(1+1/(2x))log3=log(3^(1/x)+27)

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .