Home
Class 11
MATHS
log3(log2â+log1\3(log1\2^b)=1 then the v...

log3(log2â+log1\3(log1\2^b)=1 then the value of ab^3=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

If (3)/(2) log a + (2)/(3) log b - 1 = 0 , find the value of a^(9).b^(4) .

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : 15^(a+ b+ c)

If log2,log(2^x-1),log(2^x+3) are in A.P., write the value of xdot