Home
Class 12
MATHS
Find the value of lim( n -> oo ) n^(1/n ...

Find the value of `lim_( n -> oo ) n^(1/n ) `
( A ) 0
( B ) 1
( C ) 2
( D ) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)((1)/(2^(n))) is

The value of lim_ (n rarr oo) (n + 1) / (n ^ (2)) - :( 1) / (n)

the value of lim_(x rarr oo)(n!)/((n+1)!-n!)

Find lim_ (n rarr oo) n ^ (n) (1 + n) ^ (- n)

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

The value of lim_ (n rarr oo) [(1) / (n) + (e ^ ((1) / (n))) / (n) + (e ^ ((2) / (n))) / (n) + .... + (e ^ ((n-1) / (n))) / (n)] is:

The value of lim_(n rarr oo) n[log(n+1)-logn] is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

Find the value of lim_(n rarr oo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(4n)

Find lim_ (n rarr oo) 2 ^ (n-1) (10 + n) (9 + n) ^ (- 1) 2 ^ (- n)