Home
Class 12
MATHS
If vec a,vec b,vec c are three unit vect...

If `vec a,vec b,vec c` are three unit vectors,then the maximum value of `(1)/(5)(|vec a+vec b-vec c|^(2)+|vec b+vec c-vec a|^(2)+|vec c+vec a-vec b|^(2))` is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec a, vec b and vec c are unit vectors then | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) is equal to

If vec a and vec b and vec c are mutually perpendicular unit vectors,write the value of |vec a+vec b+vec c|

If vec a,vec b, and vec c are three non-coplanar vectors,then find the value of (vec a*(vec b xxvec c))/(vec b*(vec c xxvec a))+(vec b*(vec c xxvec a))/(vec c*(vec a xxvec b))+(vec c*(vec b xxvec a))/(vec a xxvec c))

Let vec a, vec b, vec c are unit vector where | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c + vec a | ^ (2) = 3 then | vec a + 2vec b + 3vec c | ^ (2) is equal to

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

Let vec a , vec b , vec c are three vectors , such that vec a + vec b + vec c = vec 0 .If , |vec a|=3 , |vec b|=4 and | vec c|=5 , then the value of, |vec a+vec b|^(2) + |vec b-vec c|^(2) + |vec c+vec a|^(2) , equal to :

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]