Home
Class 14
MATHS
In each of these questions two equations...

In each of these questions two equations numbered I and II are given. You have to solve both the equations and give answer
I `14x^2-37x+24=0`
II `28y^2-53y+20=-4`

A

if `xgey`

B

if `xgty`

C

if `xley`

D

if x=y or the relationship can’t be established.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given in the problem, we will follow these steps: ### Step 1: Solve the first equation \( 14x^2 - 37x + 24 = 0 \) We can use the quadratic formula to find the roots of the equation, which is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 14 \), \( b = -37 \), and \( c = 24 \). #### Step 1.1: Calculate the discriminant \[ b^2 - 4ac = (-37)^2 - 4 \cdot 14 \cdot 24 \] \[ = 1369 - 1344 = 25 \] #### Step 1.2: Substitute values into the quadratic formula \[ x = \frac{37 \pm \sqrt{25}}{2 \cdot 14} \] \[ = \frac{37 \pm 5}{28} \] #### Step 1.3: Calculate the two possible values of \( x \) 1. \( x_1 = \frac{37 + 5}{28} = \frac{42}{28} = \frac{3}{2} = 1.5 \) 2. \( x_2 = \frac{37 - 5}{28} = \frac{32}{28} = \frac{8}{7} \approx 1.14 \) ### Step 2: Solve the second equation \( 28y^2 - 53y + 20 = -4 \) First, we rearrange the equation: \[ 28y^2 - 53y + 20 + 4 = 0 \] \[ 28y^2 - 53y + 24 = 0 \] #### Step 2.1: Calculate the discriminant for the second equation Using the quadratic formula again, where \( a = 28 \), \( b = -53 \), and \( c = 24 \): \[ b^2 - 4ac = (-53)^2 - 4 \cdot 28 \cdot 24 \] \[ = 2809 - 2688 = 121 \] #### Step 2.2: Substitute values into the quadratic formula \[ y = \frac{53 \pm \sqrt{121}}{2 \cdot 28} \] \[ = \frac{53 \pm 11}{56} \] #### Step 2.3: Calculate the two possible values of \( y \) 1. \( y_1 = \frac{53 + 11}{56} = \frac{64}{56} = \frac{8}{7} \approx 1.14 \) 2. \( y_2 = \frac{53 - 11}{56} = \frac{42}{56} = \frac{3}{4} = 0.75 \) ### Step 3: Compare the values of \( x \) and \( y \) We found: - \( x_1 = 1.5 \) and \( x_2 \approx 1.14 \) - \( y_1 \approx 1.14 \) and \( y_2 = 0.75 \) #### Comparison: 1. For \( x = 1.5 \) and \( y = 0.75 \): \( x > y \) 2. For \( x \approx 1.14 \) and \( y \approx 1.14 \): \( x = y \) 3. For \( x \approx 1.14 \) and \( y = 0.75 \): \( x > y \) ### Conclusion From the comparisons, we can conclude that \( x \) is either greater than or equal to \( y \). ### Final Answer **Option 1: \( x \geq y \)** ---
Promotional Banner