Home
Class 12
MATHS
In a triangle ABC the value of (cos A)/(...

In a triangle `ABC` the value of `(cos A)/(a)+(cos B)/(b)+(cos C)/(c)` is (where `a,b,c` are the length of side BC,CA,AB)

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

In a triangle ABC, a (b cos C - c cos B) =

In a triangle ABC, cos A+cos B+cos C=

In any triangle ABC, show that : 2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)

In any triangle ABC ,prove that (a-b cos C)/( c-b cos A ) = (sin C ) /( sin A)

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

In any Delta A B C , prove that: (cos A)/a+(cos B)/b+(cos C)/c=(a^2+b^2+c^2)/(2a b c)

If, in a /_\ ABC , (2 cos A)/a + (cos B)/(b) + (2 cos C)/(c) = a/(bc) + b/(ca) , then: /_A = .....

If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to