Home
Class 9
MATHS
Prove that (x+sqrt2)(x-sqrt2)=x^2-2...

Prove that `(x+sqrt2)(x-sqrt2)=x^2-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1

Prove that (2+sqrt(x))^(4)+(2-sqrt(x))^(4)= 2(16+24x+x^(2)) .

Simplify (x-sqrt2)(x+sqrt2)

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Prove that \sqrt{x+i\sqrt{x^4+x^2+1}}=\pm \frac{1}{\sqrt{2}}[\sqrt{x^2+x+1}+i\sqrt{x^2-x+1}]

If x =1/2 (sqrt(a/b)-sqrt(b/a)) then prove that (2asqrt(1+x^2))/(x+sqrt(1+x^2))= a +b

For x- (4sqrt6)/(sqrt2+sqrt3) , what is the value of (x+2sqrt2)/(x-2sqrt2)+(x+2sqrt3)/(x-2sqrt3) ?

If x= (2sqrt6)/(sqrt3+sqrt2) then the value of (x+sqrt2)/(x-sqrt2)+(x+sqrt3)/(x-sqrt3) is

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1