Home
Class 11
MATHS
x^2-(sqrt15+sqrt3)x+3sqrt5=0...

`x^2-(sqrt15+sqrt3)x+3sqrt5=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(2)+(3-sqrt(5))x-3sqrt(5)=0

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

sqrt(5) x^2 - sqrt(3)x + sqrt(2) = 0 , find x

If 2sqrtx= (sqrt5 + sqrt3)/(sqrt5 - sqrt3)-(sqrt5 - sqrt3)/(sqrt5 + sqrt3) then what is the value of x ?

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then (x+y) equals (a) 2(sqrt(5)+sqrt(3))( b) 2sqrt(15)(c)8 (d) 16

Show that (sqrt5+sqrt3)/(sqrt5-sqrt3)-(sqrt5-sqrt3)/(sqrt5+sqrt3)=2sqrt15

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)), then the value of x^(2)+(1)/(x^(2))

If x=((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) and y=((sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))), find the value of (x^(2)+y^(2))

If 2sqrt(x)=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then the value of x is :