Home
Class 11
MATHS
log4(log2 x)+log2 (log4 x)=2...

`log_4(log_2 x)+log_2 (log_4 x)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation for x: 9^(log_3(log_2x))=log_2 x- (log_2 x)^2+1

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

Q. If log_x a, a^(x/2) and log_b x are in G.P. then x is equal to (1) log_a(log_b a) (2) log_a(log_e a)+log_a log_b b (3) -log_a(log_a b) (4) none of these

Solve log_4 (8)+log_4 (x+3)-log_4 (x-1)=2

Solve (log)_x2(log)_(2x)2=(log)_(4x)2.

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.

The solution set of the system of equations log_12 x(1/(log_x 2)+log_2 y)=log_2 x and log_2 x.(log_3(x+y))=3 log_3 x is : (i) x=6, y=2 (ii) x=4, y=3 (iii) x=2, y=6 (iv) x=3, y=4

Find domain of f(x) = log_5(log_4(log_3(log_2 x)))

Solve log_4(log_3x)-log_(1//4)(log_(1//3)y)=0 and x^2+y^2=17/4 .