Home
Class 11
MATHS
log(b)^3 (a)5logc2 (b)5loga4 (c)5=...

`log_(b)^3 (a)5log_c2 (b)5log_a4 (c)5=

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

The minimum value of 'c' such that log_(b)(a^(log_(2)b))=log_(a)(b^(log_(2)b)) and log_(a) (c-(b-a)^(2))=3 , where a, b in N is :

Arrange log_(2) 5, log_(0.5) 5, log_(7) 5, log_(3) 5 in decreasing order.

1/(1+log_b a+log_b c)+1/(1+log_c a+log_c b)+1/(1+log_a b+log_a c)

Evaluate : (i) log_(b)a xx log_(c)b xx log_(a)c (ii) log_(3) 8 div log_(9) 16 (iii) (log_(5)8)/(log_(25)16 xx log_(100)10)

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

The value of x satisfying the equation root(3)(5)^(log_(5)5^(log_(5)5^(log_(5)5^(log_(5)((x)/(2)) = 3, is

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

Prove the identity; (log)_a Ndot(log)_b N+(log)_b Ndot(log)_c N+(log)_c Ndot(log)_a N=((log)_a Ndot(log)_b Ndot(log)_c N)/((log)_(a b c)N)