Home
Class 12
MATHS
A = [ [ Cosalpha , Sinalpha ] , [ -Sinal...

`A = [ [ Cosalpha , Sinalpha ] , [ -Sinalpha , Cosalpha ] ]` then show A'A = 1

Promotional Banner

Similar Questions

Explore conceptually related problems

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] , then A^(10)=

Show : [ [ cosalpha , -sinalpha ] , [ sinalpha , cosalpha ] ]= [ [1 , 0 ] , [ 0 , 1 ]]

A = [ [ 1 , 0 , 0 ] , [ 0 , cosalpha , sinalpha ] , [ 0 , sinalpha , - cosalpha ] ] , find |A|

let alpha=pi/5 and A=[[cosalpha , sinalpha] , [-sinalpha , cosalpha]] and B=A+A^2+A^3+A^4 then: (A) B is singular (B) B is symmetric (C) B is skew symmetric (D) 0 lt |B| lt 1

If A=[{:(cosalpha,sinalpha),(-sinalpha,cosalpha):}] , show that A'A=I.

If (i) A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that AprimeA" "=" "I . (ii) A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , then verify that AprimeA" "=" "I .

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha