Home
Class 11
MATHS
[[log3 4,log4 3],[log3 8,log4 9]]=...

`[[log_3 4,log_4 3],[log_3 8,log_4 9]]`=

Promotional Banner

Similar Questions

Explore conceptually related problems

|[(log)_3 512,(log)_4 3],[(log)_3 8,(log)_4 9]|xx|[(log)_2 3,(log)_8 3],[(log)_3 4,(log)_3 4]|= (a) 7 (b) 10 (c) 13 (d) 17

Evaluate the determinant =|((log)_3 512,(log)_4 3),((log)_3 8,(log)_4 9)| .

log_4log_5 25+log_3log_3 3

Comprehension 2 In comparison of two numbers, logarithm of smaller number is smaller, if base of the logarithm is greater than one. Logarithm of smaller number is larger, if base of logarithm is in between zero and one. For example log_2 4 is smaller than (log)_2 8\ a n d(log)_(1/2)4 is larger than (log)_(1/2)8. Identify the correct order: (log)_2 6 (log)_3 8> log_3 6>(log)_4 6 (log)_3 8>(log)_2 6> log_3 6>(log)_4 6 (log)_2 8<(log)_4 6

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

Find the value of ((log)_3 4)((log)_4 5)((log)_5 6)((log)_6 7)((log)_7 8)((log)_8 9)dot

Solve for x, y , z . log_2 x + log_4 y + log_4 z =2 log_3 y + log_9 z + log_9 x =2 log_4 z + log_16 x + log_16 y =2

Which of the following real numbers when simplified are either terminating or rerepeating decimal ? (A) sin((3pi)/8)cos((3pi)/8)(B)log_2(112)(C)log_3 2log_4 3log_8 4(D)27^(-log_25(5))

Solve : log_4(log_3(log_2x))=0