Home
Class 12
MATHS
The number of real values of x for which...

The number of real values of x for which satisfy the equation `|(x)/(x-1)|+|x|=(x)/|x-1|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral values of x satisfying the equation |x-|x-4||=4 is

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

The number of real values of x satisfying the equation 3 sin^(-1)x +pi x-pi=0 is/are :

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

The number of real values of x satisfying the equation ;[(2x+1)/3]+[(4x+5)/6]=(3x-1)/2 are greater than or equal to {[*] denotes greatest integer function):

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

The sum of all real values of x satisfying the equation (x^(2) -5x+5)^(x^(2)+4x-45)=1 is :

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

The number of integral value(s) of x satisfying the equation |x^4 .3^(|x-2|). 5^(x-1)|=-x^4 .3^(|x-2|). 5^(x-1) is