Home
Class 12
MATHS
If B=[(2,3),(1,0)]=P+Q, where P is symme...

If `B=[(2,3),(1,0)]=P+Q`, where P is symmetric matrix and Q is skew-symmetric matrix then find the matrix P.

A

`[(5,5),(1,5)]`

B

`[(2,2),(2,0)]`

C

`[(-1,0),(1,2)]`

D

`[(1,0),(0,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the symmetric matrix \( P \) from the equation \( B = P + Q \), where \( B = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \), \( P \) is symmetric, and \( Q \) is skew-symmetric, we can follow these steps: ### Step 1: Understand the properties of symmetric and skew-symmetric matrices A symmetric matrix \( P \) satisfies \( P^T = P \), while a skew-symmetric matrix \( Q \) satisfies \( Q^T = -Q \). ### Step 2: Use the formula to separate \( B \) into \( P \) and \( Q \) We can express any matrix \( B \) as the sum of a symmetric matrix \( P \) and a skew-symmetric matrix \( Q \) using the following formulas: - \( P = \frac{1}{2}(B + B^T) \) - \( Q = \frac{1}{2}(B - B^T) \) ### Step 3: Calculate the transpose of matrix \( B \) Given: \[ B = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \] The transpose \( B^T \) is: \[ B^T = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \] ### Step 4: Calculate \( P \) Using the formula for \( P \): \[ P = \frac{1}{2}(B + B^T) = \frac{1}{2}\left(\begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}\right) \] Now, add the matrices: \[ B + B^T = \begin{pmatrix} 2 + 2 & 3 + 1 \\ 1 + 3 & 0 + 0 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ 4 & 0 \end{pmatrix} \] Now, divide by 2: \[ P = \frac{1}{2}\begin{pmatrix} 4 & 4 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix} \] ### Step 5: Final result Thus, the symmetric matrix \( P \) is: \[ P = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix} \]
Promotional Banner